import collections
import re
from d2l import torch as d2l
将数据集读取到由文本行组成的列表中
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt',
'090b5e7e70c295757f55df93cb0a180b9691891a')
def read_time_machine():
"""Load the time machine dataset into a list of text lines."""
with open(d2l.download('time_machine'), 'r') as f:
lines = f.readlines()
return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]
lines = read_time_machine()
print(f'
print(lines[0])
print(lines[10])
# text lines: 3221 the time machine by h g wells twinkled and his usually pale face was flushed and animated the
每个文本序列被拆分成一个标记列表
def tokenize(lines, token='word'):
"""将文本行拆分为单词或字符标记。"""
if token == 'word':
return [line.split() for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('错误:未知令牌类型:' + token)
tokens = tokenize(lines)
for i in range(11):
print(tokens[i])
['the', 'time', 'machine', 'by', 'h', 'g', 'wells'] [] [] [] [] ['i'] [] [] ['the', 'time', 'traveller', 'for', 'so', 'it', 'will', 'be', 'convenient', 'to', 'speak', 'of', 'him'] ['was', 'expounding', 'a', 'recondite', 'matter', 'to', 'us', 'his', 'grey', 'eyes', 'shone', 'and'] ['twinkled', 'and', 'his', 'usually', 'pale', 'face', 'was', 'flushed', 'and', 'animated', 'the']
构建一个字典,通常也叫做词表(vocabulary),用来将字符串标记映射到从$0$开始的数字索引中
class Vocab:
"""文本词表"""
def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
if tokens is None:
tokens = []
if reserved_tokens is None:
reserved_tokens = []
counter = count_corpus(tokens)
self.token_freqs = sorted(counter.items(), key=lambda x: x[1],
reverse=True)
self.unk, uniq_tokens = 0, ['<unk>'] + reserved_tokens
uniq_tokens += [
token for token, freq in self.token_freqs
if freq >= min_freq and token not in uniq_tokens]
self.idx_to_token, self.token_to_idx = [], dict()
for token in uniq_tokens:
self.idx_to_token.append(token)
self.token_to_idx[token] = len(self.idx_to_token) - 1
def __len__(self):
return len(self.idx_to_token)
def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):
return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]
def to_tokens(self, indices):
if not isinstance(indices, (list, tuple)):
return self.idx_to_token[indices]
return [self.idx_to_token[index] for index in indices]
def count_corpus(tokens):
"""统计标记的频率。"""
if len(tokens) == 0 or isinstance(tokens[0], list):
tokens = [token for line in tokens for token in line]
return collections.Counter(tokens)
构建词汇表
vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[:10])
[('<unk>', 0), ('the', 1), ('i', 2), ('and', 3), ('of', 4), ('a', 5), ('to', 6), ('was', 7), ('in', 8), ('that', 9)]
将每一行文本转换成一个数字索引列表
for i in [0, 10]:
print('words:', tokens[i])
print('indices:', vocab[tokens[i]])
words: ['the', 'time', 'machine', 'by', 'h', 'g', 'wells'] indices: [1, 19, 50, 40, 2183, 2184, 400] words: ['twinkled', 'and', 'his', 'usually', 'pale', 'face', 'was', 'flushed', 'and', 'animated', 'the'] indices: [2186, 3, 25, 1044, 362, 113, 7, 1421, 3, 1045, 1]
将所有内容打包到load_corpus_time_machine
函数中
def load_corpus_time_machine(max_tokens=-1):
"""返回时光机器数据集的标记索引列表和词汇表。"""
lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[token] for line in tokens for token in line]
if max_tokens > 0:
corpus = corpus[:max_tokens]
return corpus, vocab
corpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)
(170580, 28)