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Search Space

• Specify range for each hyperparameter 

 

 

 

 

 

• The search space can be exponentially large 

• Need to carefully design the space to improve efficiency
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HPO algorithms: Black-box or Multi-fidelity

• Black-box: treats a training job as a black-box in HPO: 

• Completes the training process for each trial 

• Multi-fidelity: modifies the training job to speed up the search 

• Train on subsampled datasets 

• Reduce model size (e.g less #layers, #channels) 

• Stop bad configuration earlier 

https://c.d2l.ai/stanford-cs329p
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HPO algorithms

Image credit: Automated Machine Learning: State-of-The-Art and Open Challenges
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https://arxiv.org/abs/1906.02287
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Two most common HPO strategies

• Grid search 

• All combinations are evaluated 

• Guarantees the best results 

• Curse of dimensionality

for config in search_space: 

    train_and_eval(config) 

return best_result

for _ in range(n): 

    config = random_select(search_space) 

    train_and_eval(config) 

return best_result 

• Random search 

• Random combinations are tried 

• More efficient than grid search 

(empirically and in theory, shown in 

Random Search for Hyper-Parameter 

Optimization) 

https://c.d2l.ai/stanford-cs329p
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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Bayesian Optimization (BO)

• BO: Iteratively learn a mapping from HP to objective function.  

Based on previous trials. Select the next trial based on the current estimation. 

• Surrogate model 

• Estimate how the objective function depends on HP 

• Probabilistic regression models: Random forest, Gaussian process, … 

https://c.d2l.ai/stanford-cs329p
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Bayesian Optimization (BO)

• Acquisition function 

• Acquisition max means uncertainty and predicted objective are high.  

• Sample the next trial according to the acquisition function 

• Trade off exploration and exploitation 

• Limitation of BO:  

• In the initial stages, similar to random search 

• Optimization process is sequential

https://c.d2l.ai/stanford-cs329p
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Successive Halving

• Save the budget for most promising config 

• Randomly pick  configurations to train  

epochs 

• Repeat until one configuration left: 

• Keep the best  configuration to train 

another  epochs 

• Keep the best  configuration to train 

another  epochs 

• …… 

• Select  and  based on training budget 

and #epoch needed for a full training 
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Hyperband

• In Successive Halving 

• : exploration 

• : exploitation 

• Hyperband runs multiple 

Successive Halving, each 

time decreases  and 

increases  

• More exploration first, then do 

more exploit
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Summary

• Black-box HPO: grid/random search, bayesian optimization 

• Multi-fidelity HPO: Successive Halving, Hyperband 

• In practice, start with random search 

• Beware there are top performers 

• You can find them by mining your training logs, or what common 

configurations used in paper/code
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