
homework3

February 6, 2019

1 Homework 3 - Berkeley STAT 157

Handout 2/5/2019, due 2/12/2019 by 4pm in Git by committing to your repository.
Formatting: please include both a .ipynb and .pdf file in your homework submission,

named homework3.ipynb and homework3.pdf. You can export your notebook to a pdf either
by File -> Download as -> PDF via Latex (you may need Latex installed), or by simply printing
to a pdf from your browser (you may want to do File -> Print Preview in jupyter first). Please
don’t change the filename.

In [1]: from mxnet import nd, autograd, gluon
import matplotlib.pyplot as plt

2 1. Logistic Regression for Binary Classification

In multiclass classification we typically use the exponential model

p(y|o) = softmax(o)y =
exp(oy)∑
y′ exp(oy′)

1.1. Show that this parametrization has a spurious degree of freedom. That is, show that both o
and o+ c with c ∈ R lead to the same probability estimate. 1.2. For binary classification, i.e. when-
ever we have only two classes {−1, 1}, we can arbitrarily set o−1 = 0. Using the shorthand o = o1
show that this is equivalent to

p(y = 1|o) = 1

1 + exp(−o)
1.3. Show that the log-likelihood loss (often called logistic loss) for labels y ∈ {−1, 1} is thus

given by

− log p(y|o) = log(1 + exp(−y · o))

1.4. Show that for y = 1 the logistic loss asymptotes to o for o→∞ and to exp(o) for o→ −∞.

3 2. Logistic Regression and Autograd

1. Implement the binary logistic loss l(y, o) = log(1 + exp(−y · o)) in Gluon
2. Plot its values for y ∈ {−1, 1} over the range of o ∈ [−5, 5].

1

3. Plot its derivative with respect to o for o ∈ [−5, 5] using ‘autograd’.

In [2]: def loss(y,o):
add your loss function here
return l

4 3. Ohm’s Law

Imagine that you’re a young physicist, maybe named Georg Simon Ohm, trying to figure out
how current and voltage depend on each other for resistors. You have some idea but you aren’t
quite sure yet whether the dependence is linear or quadratic. So you take some measurements,
conveniently given to you as ‘ndarrays’ in Python. They are indicated by ‘current’ and ‘voltage’.

Your goal is to use least mean squares regression to identify the coefficients for the following
three models using automatic differentiation and least mean squares regression. The three models
are:

1. Quadratic model where voltage = c+ r · current + q · current2.
2. Linear model where voltage = c+ r · current.
3. Ohm’s law where voltage = r · current.

In [3]: current = nd.array([1.5420291, 1.8935232, 2.1603365, 2.5381863, 2.893443, \
3.838855, 3.925425, 4.2233696, 4.235571, 4.273397, \
4.9332876, 6.4704757, 6.517571, 6.87826, 7.0009003, \
7.035741, 7.278681, 7.7561755, 9.121138, 9.728281])

voltage = nd.array([63.802246, 80.036026, 91.4903, 108.28776, 122.781975, \
161.36314, 166.50816, 176.16772, 180.29395, 179.09758, \
206.21027, 272.71857, 272.24033, 289.54745, 293.8488, \
295.2281, 306.62274, 327.93243, 383.16296, 408.65967])

5 4. Entropy

Let’s compute the binary entropy of a number of interesting data sources.

1. Assume that you’re watching the output generated by a monkey at a typewriter. The mon-
key presses any of the 44 keys of the typewriter at random (you can assume that it has not
discovered any special keys or the shift key yet). How many bits of randomness per charac-
ter do you observe?

2. Unhappy with the monkey you replaced it by a drunk typesetter. It is able to generate words,
albeit not coherently. Instead, it picks a random word out of a vocabulary of 2, 000 words.
Moreover, assume that the average length of a word is 4.5 letters in English. How many bits
of randomness do you observe now?

3. Still unhappy with the result you replace the typesetter by a high quality language model.
These can obtain perplexity numbers as low as 20 points per character. The perplexity is
defined as a length normalized probability, i.e.

PPL(x) = [p(x)]1/length(x)

2

https://en.wikipedia.org/wiki/Georg_Ohm
https://en.wikipedia.org/wiki/File:Chimpanzee_seated_at_typewriter.jpg

6 5. Wien’s Approximation for the Temperature (bonus)

We will now abuse Gluon to estimate the temperature of a black body. The energy emanated from
a black body is given by Wien’s approximation.

Bλ(T) =
2hc2

λ5
exp

(
− hc

λkT

)
That is, the amount of energy depends on the fifth power of the wavelength λ and the temper-

ature T of the body. The latter ensures a cutoff beyond a temperature-characteristic peak. Let us
define this and plot it.

In [4]: # Lightspeed
c = 299792458
Planck's constant
h = 6.62607004e-34
Boltzmann constant
k = 1.38064852e-23
Wavelength scale (nanometers)
lamscale = 1e-6
Pulling out all powers of 10 upfront
p_out = 2 * h * c**2 / lamscale**5
p_in = (h / k) * (c/lamscale)

Wien's law
def wien(lam, t):

return (p_out / lam**5) * nd.exp(-p_in / (lam * t))

Plot the radiance for a few different temperatures
lam = nd.arange(0,100,0.01)
for t in [10, 100, 150, 200, 250, 300, 350]:

radiance = wien(lam, t)
plt.plot(lam.asnumpy(), radiance.asnumpy(), label=('T=' + str(t) + 'K'))

plt.legend()
plt.show()

3

Next we assume that we are a fearless physicist measuring some data. Of course, we need
to pretend that we don’t really know the temperature. But we measure the radiation at a few
wavelengths.

In [5]: # real temperature is approximately 0C
realtemp = 273
we observe at 3000nm up to 20,000nm wavelength
wavelengths = nd.arange(3,20,2)
our infrared filters are pretty lousy ...
delta = nd.random_normal(shape=(len(wavelengths))) * 1

radiance = wien(wavelengths + delta,realtemp)
plt.plot(wavelengths.asnumpy(), radiance.asnumpy(), label='measured')
plt.plot(wavelengths.asnumpy(), wien(wavelengths, realtemp).asnumpy(), label='true')
plt.legend()
plt.show()

4

Use Gluon to estimate the real temperature based on the variables wavelengths and
radiance.

• You can use Wien’s law implementation wien(lam,t) as your forward model.
• Use the loss function l(y, y′) = (log y − log y′)2 to measure accuracy.

5

	Homework 3 - Berkeley STAT 157
	1. Logistic Regression for Binary Classification
	2. Logistic Regression and Autograd
	3. Ohm's Law
	4. Entropy
	5. Wien's Approximation for the Temperature (bonus)

